Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID : 11291

To cite this version: Baran, Philippe and Boucard, Florian and Boyenval, Elise and Cassan, Ludovic and Garmendia, Laurent and Hurel, Gregory and Prel, Pauline Hydropeaking impacts on the Lez river and studies to define mitigation measures. (2012) In: Eawag/Wasser-Agenda 21 Workshop on Hydropeaking, 19 June 2012 - 19 June 2012 (Zurich, Switzerland).

Any correspondance concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
Hydropeaking impacts on the Lez river and studies to define mitigation measures

In alphabetical order: Baran P1, Boucard F2, Boyenval E3, Cassan L1, Garmandia L2, Hurel G1 & Prel P1

The Lez River downstream Eylie Power plant

- Mountain stream in Pyrenees
- Slope = 0.3%
- Width: 3-5 m
- Brown trout population

Lez river

Hydroelectric schemes

Series of 13 water intakes and 1 reservoir at high altitude (=1900 m, diverted basin area = 12 km²)

Intermediate basin with flow reconstitution (= 16 km²)

Hydropeaks restitution at an altitude of 870 m, on an nearly natural hydrological regime
- Basin area = 28 km²
- Mean discharge = 1 m³/s
- Width: 3-5 m
- Maximum turbine discharge: 3.6 m³/s

This causes high flows compared to stream size

Affected reach 7 km long

Presented by Courret D¹
(dominique.courret@imfr.fr)
Lez river

Hydropeaks characterization

- **Hydropeaks visualisation, at Bordes station** (around 15 km downstream hydropeaks restitution [212 km²], mean discharge 7.1 m³/s)
- Most hydropeaks' amplitudes corresponds to maximum turbine flow
- Base flow estimates downstream Eylie power plant range down to 0.3-0.5 m³/s (30-50% of mean discharge)

![Graph of hydropeaks at Bordes station](image)

Lez river

Hydropeaks characterization

![Graph showing number of hydropeaks per trout life stages](image)
Biological issues linked to hydropeaks

- Low trout densities and biomass compared to non-affected streams (183 and 312 ind./100 m, in Isard and Riberot tributaries with comparable size)

- Fry recruitment negatively related to the number of hydropeaks during emergence period
Lez river

Biological Issues linked to hydropeaks

- Low influence of fry (0+) recruitment level on juvenile (1+) densities the next year
- No influence of juvenile densities on 2+ trout densities the next year

⇒ It’s suspected that habitat conditions during hydropeaks are limiting for juveniles and adults

Studies to improve habitat conditions during hydropeaks

- Relicensing process includes blocks placement to mitigate hydropeaks impacts
- 2D hydraulic modelling of 4 stations to test several modalities for blocks placement
 ⇒ assessment of efficiency thank to microhabitat method
Lez river

Studies to improve habitat conditions during hydropéaks

- **Hydraulic conditions searched in block wakes**:
 - Minimum water depth of 20-30 cm at low flow
 - Maximum water velocity of 20 cm/s in wake during hydropéaks
 - Provide shelter

- **2 modalities tested for blocks placement**:

 - "Isolated" block + groynes
 - Rows of blocks forming porous sills

Lez river

Studies to improve habitat conditions during hydropéaks

- Flows velocities (left) and habitat values for adult (right) during an hydropéaks on station 2

<table>
<thead>
<tr>
<th>Presently</th>
<th>With placement of blocks and groynes</th>
<th>Presently</th>
<th>With placement of blocks and groynes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Studies to improve habitat conditions during hydropeaks

- Hydraulic modelling results confirm that habitat conditions during hydropeaks can be limiting for trout population, more than low flow periods.
- Block placement can be a solution to improve habitat conditions during hydropeaks.

![Evolution of habitat values for adult stage in station 2](image)

Conclusions

- **High flows conditions during hydropeaks** (maximum flow over 4 times the mean discharge) **appear to be limiting for the trout population.**
- **Block placement can be a solution to improve habitat conditions during hydropeaks, but this need to be dimensioned** (size and position of blocks) ➔ 2D hydraulic modelling can be a useful tool.
- **Solution not yet implemented on the Lez river.**
- **Work on morphology implies owning river banks, or owners’ agreement, and raise several questions:**
 - Structure stability and consequences on water level during floods
- **This solution leads to important works to produce a significant effect at the reach scale**
- **Other ways of improvement, notably during emergence phase:**
 ➔ Limiting number of hydropeaks and/or the maximum turbine discharge