Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 10565

To cite this version: Capron, Marie and Tordjeman, Philippe and Charru, François On the air permability of Populus pit. (2012) In: 37ème Congrés de la Société de Biomécanique, 16 October 2012 - 19 October 2012 (Toulouse, France)

Any correspondance concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
On the air permeability of Populus pit

M. CAPRON, Ph. TORDJEMAN, F. CHARRU
Université de Toulouse, INPT-CNRS,
Institut de Mécanique des Fluides de Toulouse
What is a pit?

- Bordered pits = cavities in cell walls of xylem conduits used for water-transport system

- Two parts:
 - Pit membrane: porous membrane that allows water to pass between xylem conduits but limits the spread of embolism
 - Pit wall: overarching cell wall with a narrow aperture to the pit chamber
Introduction

• Problematics
 – How is sap hydrodynamics controlled by « pits »?
 – How do pit junctions regulate the sap flow and stop embolism?
 – How does pit porosity adjust the flow under negative pressure and stop the air bubble diffusion?

• Approach
 – Quantitative study of pit properties at the nanometric scale
 – Study of hydrodynamics of the Populus branches
I- Quantitative study of pit properties at the nanometric scale

Atomic Force Microscopy (AFM)

Agilent 5500 Scanning Probe Microscope

- Surface structure images
- Nano-mechanics
 - Dry pits
 - Nano-indentation
 - Swelled by water pits
 - Membrane flexion
 - Nano-indentation
Vessel and pit architectures

Pit microstructure

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pit diameter (AFM)</td>
<td>7 μm</td>
</tr>
<tr>
<td>Membrane diameter (AFM)</td>
<td>1.5 μm</td>
</tr>
<tr>
<td>Pit wall thickness (AFM)</td>
<td>1.60 μm</td>
</tr>
<tr>
<td>Vessel diameter in the branches (AFM)</td>
<td>11.2 μm</td>
</tr>
<tr>
<td>Thickness of the pit membrane (TEM)</td>
<td>311 nm</td>
</tr>
</tbody>
</table>

AFM images of pits

[Images of AFM images showing PM, PW1, and PW2]
Young’s moduli on dry sample

Indentation of vessel wall

Hertz model:
\[E = \frac{3\chi k}{4R^{1/2}} = 7.89 \pm 0.39 \text{ GPa} \]

Force-displacement curves

Indentation curve

Flexion of PM

Flexion model:
\[E = \frac{\chi L^2}{4ad^3} \left[\frac{3(2 - \nu)(1 - \nu^2)}{\pi} \right] = 3.63 \times 10^2 \pm 40 \text{ MPa} \]

Log-log representation of the force-distance curve with a linear fit

Force-displacement curve

Indentation curve
Viscoelastic behavior of water swelled pits

- Zener viscoelastic model:
 \[\sigma = E_1 \varepsilon + \eta \dot{\varepsilon} \left(1 - \exp \left(-\frac{\varepsilon}{\tau \dot{\varepsilon}}\right)\right) \]
 - relaxation time \(\tau \)
 - two Young’s moduli, \(E_1 \) and \(E_2 \)

<table>
<thead>
<tr>
<th></th>
<th>PM</th>
<th>PW1</th>
<th>PW2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_1) (GPa)</td>
<td>0.41</td>
<td>1.66</td>
<td>0.43</td>
</tr>
<tr>
<td>(E_1 + E_2) (GPa)</td>
<td>0.95</td>
<td>3.35</td>
<td>0.84</td>
</tr>
<tr>
<td>(\tau) (s)</td>
<td>0.99</td>
<td>63.3</td>
<td>6.2</td>
</tr>
</tbody>
</table>
II- Study of hydrodynamics of the Populus branches

Air seeding experiments

Diagram of the experiment

First results
- Critical pressure: $P_c = 18 \times 10^5$ Pa
- Critical length: $L_c = 15$ cm
- Open pore diameter
 \[d_{\text{open pore}} \approx \frac{4\sigma \cos(\theta)}{\Delta P} \]
 \[d_{\text{open pore}} \approx 162 \text{ nm} \]
Deformation study

- PM deformation:
 \[
 \begin{pmatrix}
 () & () & () \\
 \end{pmatrix}
 \]
- Maximal deformation at 18 bar:
 \[4.43 \times 10^{-6} \, \mu m\]
- \(d_{\text{closed pore}} \approx 96 \, \text{nm}\)
Experimental flow rate

- \(\Delta P \in [\Delta P_C; 3MPa] \)

- Permeability \(K \) of the samples:
 \[
 K = \frac{Q_T\mu L_b}{A \Delta P}
 \]
 - \(\mu \) is the water viscosity
 - \(\Delta P \) is the pressure difference
 - \(L_b \) is the branch length
 - \(A \) is area of the branch section

- Total flow rate \(Q_T \) for \(n \) capillaries:
 \[
 Q_T = n_{cap} \frac{\pi \Delta P}{128\mu L_b} d_{cap}^4
 \]
Flow rate through a pit

Modeling of the flow rate

Numbers of capillaries, pits and open pores variation
Conclusion

- Study of the structure and the mechanical properties of pits at nanoscale

 Dry pits moduli

<table>
<thead>
<tr>
<th>Material</th>
<th>Modulus (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vessel wall</td>
<td>7.89</td>
</tr>
<tr>
<td>PM</td>
<td>3.62 10^2</td>
</tr>
</tbody>
</table>

- Swelled by water pits Zener elements

<table>
<thead>
<tr>
<th>Material</th>
<th>E_1 (GPa)</th>
<th>$E_1 + E_2$ (GPa)</th>
<th>τ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>0.41</td>
<td>0.95</td>
<td>0.99</td>
</tr>
<tr>
<td>PW1</td>
<td>1.66</td>
<td>3.35</td>
<td>63.3</td>
</tr>
<tr>
<td>PW2</td>
<td>0.43</td>
<td>0.84</td>
<td>6.2</td>
</tr>
</tbody>
</table>

- $E_{membrane} \ll E_{vessel\ wall}$
- No difference in mechanical properties between dry and water swelled pit membranes
- Membrane is deformed by injected air
- $d_{closed\ pore} \approx 100$ nm found by air seeding experiments
- Membrane is deformed until 2.3 MPa with a constant number of pores, pore diameters are growing with membrane deformation
Thank you for your attention