Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 10491

To cite this version: Airiau, Christophe Adjoint-based sensitivity and feedback control of noise emission. (2013) In: MUSAF II Colloquium (Multiphysics and Unsteady Simulations for Aeronautical Flows), 18 September 2013 - 20 September 2013 (Toulouse, France)

Any correspondance concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
Adjoint-based sensitivity and feedback control of noise emission

Christophe Airiau

1Institut de Mécanique des Fluides de Toulouse
Toulouse III University

co-workers: Cordier (PPRIME, 07-13), Nagarajan (PhD, 06-10), Moret (PhD, 06-09), Guaus (PhD, 04-07), Spagnoli (PhD, 05-08)

september, 20th, 2013
Plan

1. Introduction and testcase
2. Sensitivity analysis
3. Direct feedback output control
4. Application and analysis
5. Summary and perspectives
Active flow control strategies

- In addition to the passive flow control and the shape optimization, it is a necessity to control flows to enhance performances in transportation vehicles: drag, lift, noise emission, flow instabilities, separation, ...

- My challenge: to propose a methodology based on theoretical and numerical approaches for actuation law design dealing with large system (DoF $\geq 10^6$)

1. **Open loop control**:
 - optimization problem with full PDE (DNS, LES, ...)
 - expensive and time consuming
 - low robustness

2. **Feedback control**: more efficient, used in real flow and systems, robustness can be a parameter or an issue, first step towards adaptive control.
Feedback control: to manage the huge size of fluid flow configurations

- Need a Reduced Order Model

1. ROM based on global stability modes: laminar flow \rightarrow turbulent flow

2. ROM based on POD modes: laminar flow \rightarrow moderate turbulent flow.
 Rowley (Balanced POD, 2012), Airiau & Cordier (2013), ...

3. POD analysis + heuristic feedback law based on physical considerations
 Pastoor et al (2008), ...

- Usual feedback loop (sensors \rightarrow state estimate \rightarrow actuation)
 Done with ROM

- Present work: with DNS, direct output feedback law
 sensor outputs \rightarrow actuation law
Introduction and testcase

General methodology: control of a ROM

- Application to any flow control as soon as a POD is relevant
- 8 steps: large developments and programming
- DNS: large DOF (\(> 10^6\))
- ROM/LINEAR CONTROL: very low DOF (\(< 10\))
- Computational cost: 2 DNS + ROM
- Many parameters, options and choices...
- What else?

Issues for an efficient feedback law:

- Optimal position and type of actuators (controlability)
- Optimal position and type of sensors (observability)
- Well capturing the response of the flow (computed by DNS) to any actuation: actuation mode(s)

POD: Proper Orthogonal Decomposition
1a - Testcase : 2D compressible cavity flow

- $M_\infty = 0.6$, $R_\theta = 688$, $Re_L = 2981$, noise control is a good (severe) testcase

- SPL in dB
 - $n=101$, $x/h=3.33$, $y/h = 0.82$ and wall
 - O_{1} and O_{3} : center point of the observation domain for sensitivity
 - O_{2} : probes for spectral analysis (SPL)

- Self-sustained instability due to a feedback effects with the impingement of the shear layer on the downstream cavity corner

- instantaneous pressure, acoustic wave directivity Rowley’s case

- Rossiter 2 : $St_L = 0.74$

- Tescase $L/H = 2$
 - (Rowley, JFM 2002)
 - $St_L = \frac{n - 0.25}{M_\infty + 1.754}$
 - $St_L = 0.703$
Actuator position and type provided by the sensitivity analysis

1. Observed quantity (functional)

\[
J(q, f) = \int_\Omega \int_0^T j_{\text{observed}} d\Omega dt, \quad j_{\text{observed}} = \frac{1}{2}(p - \bar{p})^2
\]

\(q\) : state vector, \(f\) forcing/actuation vector

2. Variational problem and Fréchet derivative : sensitivity \(S(x, t)\)

\[
\delta J = \left\langle \frac{\partial j_{\text{observed}}}{\partial q_k}, \delta q_k \right\rangle_\Omega = \left\langle S_{f_i}, \delta f_i \right\rangle_\Omega
\]

3. Adjoint Navier-Stokes equations : sensitivity is related to the adjoint state : \(S_{f_i} = q_i^*\)

4. true for wall localized forcing and global volume forcing
Sensitivity analysis

0 - Actuators settings

- 2D Fourier modes, adjoint state (case 10) from adjoint DNS
 - Stationary mode sensitivity: steady actuation
 - 2nd Rossiter mode sensitivity: unsteady actuation
 - \(\hat{p}^* \) and \(\hat{m}_x^* \)

Modes localized in space associated to the controllability property

Figure 3 - Modes at \(St_1 \) for \(\hat{m}_x^*/U_\infty \) (blue: 0.48, red: 7.22) and \(\hat{p}^*/U_\infty^2 \) (blue: 0.23, red: 3.71)
1b - DNS response to a generic actuation

- Need to define actuation mode in the ROM from actuated DNS
- Wall normal velocity forcing
 - Distributed actuation centered at $x_f = 2.72X/D$
 \[f_w(x, t) = \gamma(t) \exp[-r^2/\sigma^2], \quad r^2 = ||x - x_{for}||^2, \sigma = 50\Delta y \]
 - Large frequency bandwidth actuation $A_1(t)$:
 \[\gamma(t) = A_1 \sin(2\pi St_1 t) \times \sin(2\pi St_2 t - A_2 \sin(2\pi St_3 t)) \]

To excite and therefore later to control all possible physical unstable perturbations

$St_{cavity} \approx 0.7$
Proper Orthogonal Decomposition of unactuated flow field \(\rightarrow \phi_i^u(x) \)

POD mesh size \(<\) DNS mesh \(\Rightarrow\) gain in CPU time and accuracy
Optimal size?

\[
q^a(x, t) = \bar{q}^a(x) + \sum_{i=1}^{N} a_i^a(t) \phi_i^u(x) + \gamma(t) \psi(x)
\]

- \((\phi_{i=1,N}, \psi)\) orthogonal basis, truncation to \(N\) modes
- Assumption: \(\bar{q}^a(x) \approx \bar{q}^u(x)\)
- \(q = (\zeta = 1/\rho, u, v, p)\)
3 - Actuation mode, $A_1 = 0.001$

Sine forcing, u velocity, Vigo’s and isentropic models

Distributed actuation along the wall and in the shear layer

Chirp, u velocity, Vigo’s model

Actuation close to the noise source location
Direct feedback output control

5, 6a, 6b - ROM-Galerkin projection

- **Projection** of NSE (formulation with $\zeta = 1/\rho$, Vigo-98, Bourguet-09) on $(\phi^u_{i=1,N})$:
 Nonlinear forced dynamical system of low order

 \[
 \dot{a} = C + La + a^t Qa + \gamma \hat{L}a + \gamma \hat{C} + \gamma^2 \hat{Q}
 \]

- **Calibration** of ROM (find C and L for $a(t)_{POD} = a(t)_{ROM}$)

- **Equilibrium (steady) state** (many states can exist):

 Physical domain:
 \[
 q^e(x) = \bar{q}(x) + \sum_{i=1}^{N} a^e_i \phi_i(x)
 \]

 Equilibrium state of the NS eq.

- **Linearization** with $\tilde{a} = a - a^e$:

 \[
 \dot{\tilde{a}} = L\tilde{a} + \tilde{a}^t Qa^e + (a^e)^t Q\tilde{a} + (\hat{L}a^e + \hat{C})\gamma
 \]

 \[
 \dot{\tilde{a}} = \tilde{A}\tilde{a} + \tilde{B} \gamma \quad \text{State equation}
 \]
4 - Use of sensors: output identification model

Required for the feedback control law design

- Unsteady pressure sensors ($\tilde{y}_i = \tilde{p}_i$):

 \[\tilde{y} = \tilde{C}\tilde{a} + \tilde{D}\gamma, \quad \tilde{y} = y - \bar{y} - \tilde{C}a^e \]

- Sensor y_i is located on the POD mesh at x_k:

 $\tilde{C}_{ij} = \phi_j^u(x_k)$ and $\tilde{D}_i = \psi_k = \psi(x_k)$.

$N_s = 6 \ (1 \rightarrow 6)$ sensors are used to build the actuation law.

Optimal positions: physical considerations, observability
direct output feedback control law design

- linear state space model: \(\dot{\tilde{a}} = \tilde{A}\tilde{a} + \tilde{B}\gamma \)
- feedback control law: \(\gamma = -K_c \tilde{a} \)
- minimization of \(J = \int_0^T (\tilde{a}^T \tilde{a} + \ell^2 \gamma^2) \, dt \).
- Ricatti equation: \(K_c = \frac{1}{\ell^2} \tilde{B}^T X \cdot (\tilde{A}^T X + X\tilde{A} - \frac{1}{\ell^2} X\tilde{B}\tilde{B}^T X + I d = 0) \).
- outputs: \(\tilde{y} = \tilde{C}\tilde{a} + \tilde{D}\gamma \)
- direct feedback output control: \(\gamma(t) = \alpha(y(t) - \bar{y}) + \beta \) \hspace{1cm} (5)

- \(N_{POD} = N_{Sensors} \) : \(\gamma(t) = -K_c(\tilde{C} - \tilde{D}K_c)^{-1}(y - \bar{y} - \tilde{C}a^e) \)
- \(\beta \) imposes the mean actuation velocity, \(\alpha \) imposes the damping of the time variation of the actuation
- implementation in DNS code
Application and analysis

application: efficiency & robustness

- Efficient and robust feedback control law: decay of pressure fluctuation levels

\[\gamma(t) = \alpha(y(t) - \bar{y}) + \beta, \]

- Tuning \(\beta \) to improve the efficiency
 - A) \(\beta \approx 5 \text{ m/s} \),
 - B) \(\beta \approx 10 \text{ m/s} \),
 - C) \(\beta \approx 17 \text{ m/s} \)

- Robustness, feedback law
 - Time window: \(\text{it}=25000 \)
 - Spatial window: red box

- Near and far field noise damping

- Subharmonic and harmonics: weakly nonlinear effects
Noise reduction

Case C: maximum of -10 dB

- Global noise reduction
- Few areas with increase, but SPL remains low
- Wavy SPL contours: weakly nonlinear effect
- Actuation modifies the mean pressure: nonlinearity
Deeper analysis: RIC content & POD eigen values

- Actuation drastically modifies the flow dynamic:
 \[q(x, t) = \bar{q}(x) + \sum_{i=1}^{N} a_i(t)\phi_i(x) \]

Fig. 1: POD eigenvalues

Fig. 2: Mode relevance

Fig. 3: \(a_i(t) \), no actuation

Fig. 4: \(a_i(t) \), with control

Relative Information Content (RIC):
- more relevant modes are required

Eigen values distribution:
- new spectra
- time coefficients \(a_i(t) \to \text{constant for } t \to \infty \), time damping
Phase portrait: convergence towards a steady (equilibrium) state?

- POD decompositions:
 1) with unsteady actuation
 \[q^a(x, t) = \bar{q}^a(x) + \sum_{i=1}^{N} a_i^a(t) \phi_i^u(x) + \gamma(t) \psi(x) \]
 2) with stabilization \((t \to \infty)\):
 \[q^\infty(x) = \bar{q}^{ac}(x) + \sum_{i=1}^{N} a_i^\infty \phi_i^{ac}(x) \]

- Next step: determine the final state \(q^\infty(x)\)
Summary and perspectives

- Some concluding remarks
 1. Feedback output control law implemented in DNS (2 DNS + ROM \(\rightarrow\) low cost)
 2. Efficient and quite robust (when time \(\rightarrow\) \(\infty\))
 3. Several dB of noise reduction (up to -10 dB)
 4. Possible to tune the feedback law to improve efficiency, towards nonlinearity
 5. Independent on the DNS code: \(\rightarrow\) LES?

- Current works
 1. Linear Quadratic Gaussian control with ROM with state estimate
 2. Feedback law: \[\gamma(t) = \int_{t-t_c}^{t} \sum_{i=1,N_s} G_i(t-\tau)y_i(\tau) \, d\tau \]

- Some improvements and perspectives
 1. Sensitivity analysis to many parameters included in the approach: \(N_{POD}, N_s\), actuation location and type, option of the ROM or POD, ...
 2. To test other flow decomposition to better take into account of actuation (with \(\dot{\gamma}\))
 3. To increase physical parameters (Re, Ma) and to test other flows
 4. Nonlinear feedback analysis and robustness analysis (\(H_2, H_\infty\))
 5. Validation/comparisons with experiments on low Reynolds number reference flows
Acknowledgements

- European Marie Curie Programme: AeroTraNet
- French National Aeronautical and Space Research Fondation (FNRAE), ECOSEA project
- Calmip center (computer resources in Midi-Pyrénées)