Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/Eprints ID: 10021

To link to this article: DOI:10.1016/j.advwatres.2013.09.004
URL: http://dx.doi.org/10.1016/j.advwatres.2013.09.004

To cite this version: Ebigbo, Anozie and Golfier, Fabrice and Quintard, Michel. A coupled, pore-scale model for methanogenic microbial activity in underground hydrogen storage. (2013) Advances in Water Resources, vol. 61. pp. 74-85. ISSN 0309-1708

Any correspondance concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
A coupled, pore-scale model for methanogenic microbial activity in underground hydrogen storage

Anozie Ebigo a,*, Fabrice Gollier a, Michel Quintard b,c
a Université de Lorraine, ENSG, CNRS, CREGU, GeoRessources UMR 7359, 54518 Vandœuvre-lès-Nancy Cedex, France
b Université de Toulouse, IMPT, UPS, IMPT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, F-31400 Toulouse, France
c CNRS, IMPT, F-31400 Toulouse, France

Abstract

Underground hydrogen storage (UHS) as a means of energy storage is an efficient way of compensating for seasonal fluctuations in the availability of energy. One important factor which influences this technology is the activity of methanogenic microorganisms capable of utilising hydrogen and carbon dioxide for metabolism and leading to a change in the stored gas composition. A coupled, pore-scale model is presented which aids in the investigation of the mechanisms that govern the conversion of hydrogen to methane, i.e. advective hydrogen flow, its diffusion into microbial biofilms of multiple species, and its consumption within these biofilms. The model assumes that spherical grains are coated by a film of residual water and treats the biofilm development within each film in a quasi one-dimensional manner. A sample simulation using the presented model illustrates the biofilm growth process in these films as well as the competition between three different microbial species: methanogens, acetogens, and acetotrophs.

Keywords:
Underground hydrogen storage
Coupled model
Methanogenesis
Biofilm
Pore-scale simulation

1. Introduction

1.1. Underground storage of hydrogen

Increasing energy demand and anthropogenic greenhouse-gas emissions pose serious challenges for national and international energy economies. Low emissions and the increasing efficiency of fuel cells make the case for the use of hydrogen (H₂) as the fuel of the future [1,2]. At best, H₂ is generated, e.g. through electrolysis, from renewable energy sources. In such a scheme, storing H₂ comes down to storing electricity. However, it may also be produced from fossil fuels, making it easier to contain emissions at the power plants while distributing clean energy in form of H₂, e.g. for transportation.

Obviously, variations in the supply of and demand for energy inadvertently lead to the need for appropriate storage solutions (in this case, in the form of H₂) on a large scale. Even though various forms of storage exist, the underground storage of H₂ has been found to be among the cheapest at the scale of interest [1,3]. This may be in depleted oil or gas fields, aquifers, or underground caverns (rocks or salt) [1,4]. Note, however, that the present study focuses on storage in porous reservoirs (mainly deep aquifers) and on the technology-related issues. Owing to the high mobility of H₂ (low density, low viscosity, high diffusivity), storage operations typically have to deal with the problem of loss due to leakage. It is important to differentiate underground hydrogen storage (UHS), the temporary storage of a fuel, from carbon capture and storage (CCS), the disposal of a waste product. UHS is faced with more severe leakage problems, and very importantly, there is a potential for the consumption of stored H₂ due to microbial activity [5]. Note that increased attention has recently been paid to abiotic hydrogen reactivity at low temperatures [6] which could impact H₂ storage, but such geothermal aspects will not be considered here.

In natural subsurface environments, several microorganisms are active, even at great depths [7,8]. The type of microbial activity which dominates in a given region or at a given depth often depends on the terminal electron acceptor available, e.g. iron (III), sulphate, carbon dioxide. Specialised microorganisms (methanogens) are capable of using carbon dioxide (CO₂) as the terminal electron acceptor to consume H₂. Due to extremely low H₂ concentrations in the subsurface, such hydrogenotrophic activity tends to be very slow. However, in a UHS site, there is an abundance of H₂ in the residual water. If the stored gas contains CO₂, as is the case for town gas, the same goes for dissolved CO₂. Šmigáň et al. [9] and Buzeck et al. [10] report significant changes in the composition of stored town gas (less H₂ and CO₂, more methane, CH₄) caused by microbial activity. However, due to the novelty of this research topic, the published literature is still very poor and consists mostly of an inventory of geological structures suitable for hydrogen storage [11] or studies on technology-related issues [12,13] and the

* Corresponding author. Tel.: +49 241 80 49882; fax: +49 241 80 49889.
E-mail addresses: ebigo@gmail.com, AEBbigo@eonerc.rwth-aachen.de (A. Ebigo).
hydrodynamic behaviour of the gas [14]. Though a few multiphase transport models have recently been derived to investigate the coupling with bacterial population dynamics see an application of such a model to CO₂ storage in [15], the coupled mathematical model proposed by Panfilov [5] is, to the best of our knowledge, the only one that considers the impact of hydrogenotrophic activity in such a UHS site at the macroscopic scale. Due to its applicability on the reservoir scale, the model is highly relevant. It can, however, be improved by tackling its simplistic description of the biological processes (single bacterial species, homogeneous distribution of the biofilm within the fluid phase) and lack of information on effective growth and degradation rates.

Even though some information on conversion rates by methanogenic microbial cells exists, it is not clear how colonies of microbes interact to produce an effective conversion rate, how various microbial strains compete for H₂ within biofilms, or which processes and mechanisms dominate at the various scales. This research gap motivates the present work at the pore scale. It is the goal of this study to develop a numerical model which can help answer these questions, contribute towards the general understanding of how microbial processes affect UHS, and ultimately aid in quantifying effective rate parameters of H₂ conversion at the reservoir scale.

1.2. Coupled models at the pore scale

The development of coupled models for groundwater flow and transport, microbial activity, and biofilm growth has a long history from an environmental and engineering perspective. Describing bacterial-cell proliferation in biofilms poses special challenges to mathematical models. The interface between the biofilm and the bulk water tends to be sharp, leading to a discontinuous distribution of microbial activity. There is an extensive literature on this subject, and a recent review and classification of such mathematical models at the biofilm and/or pore scale can be found in [16]. Biofilm models may roughly be divided into several categories including discrete-continuum/ cellular-automaton models (e.g. [17]), continuum models (e.g. [18]), and individual-based models (e.g. [19]), with each class of models having its own set of strengths and drawbacks. Since the pioneering work of [20], pore-scale models of biofilm formation have become increasingly complex, starting with a single pore [21] to the first porous systems [22]. However, even though they proved their capability of modelling the various biofilm morphologies, they remain limited to two-dimensional geometries [23] or small volumes of interest [24]. Moreover, up to now, no model has investigated these aspects for two-phase conditions. From this brief state of the art of ongoing research and keeping in mind our ultimate goal to be addressed in this work (i.e. determining dominant mechanisms and conversion rates in a representative elementary volume), the issues mentioned above call for a description of processes on both the biofilm and pore scales.

In studying flow and transport processes involving microbial activity in the subsurface, indeed, several characteristic length scales can be identified [25, 26], ranging from the microbial-cell scale, the biofilm scale, the pore scale, the Darcy scale, up to the field/reservoir scale. In our case, the methanogenic reactions take place in the presence of microbial cells which accumulate in the biofilm while the flow and transport of the various gases occur at the pore scale. As stated by Eberhard et al. [27], biofilm processes can be resolved using length scales of micrometres and time scales of hours to days. Pore-scale flow and transport processes, however, can be resolved using length scales of millimetres and time scales of seconds to minutes. Such a disparity of scales in time and space makes it impracticable to consider pore-scale simulations over a large volume with complete microbial-scale resolution.

The classical way of addressing this issue would be to apply some form of upsampling. This has been done successfully in the past for different problems related to microbiological processes in porous media [28, 29, 30]. However, the underlying approximations and assumptions may not be justified, especially when strong coupling exists between both scales, leading to a breakdown of the model (see a discussion on the validity domains of continuum transport models in [29]). For instance, assuming local mass equilibrium between water and biofilm phases, an upsampling of the complicated biofilm-scale processes involved in a UHS reservoir would give a two-phase system (the gas phase and a pseudo-reactive water phase) at the pore scale. The effective reaction term associated with the water-film layer could be computed from a closure problem using a unit cell as complex as necessary to capture the biofilm geometry. However, changes in time of this coefficient due to the path dependence of the processes (e.g. biofilm growth and decay) would be lost in such an approach. This difficulty is indeed well known for systems with process-dependent, evolving geometries. In general, there is no simple, direct relationship between a macro-scale transport property and a single macro-scale geometrical characteristic, e.g. a volume fraction, as traditionally used in macro-scale models.

Alternatively, one may keep the scales of the different processes if appropriate coupling methods exist see a recent review of such coupling methods in [31, 32]. When used appropriately, they are capable of simulating relatively complex multi-scale processes in a computationally efficient manner [32–34].

In this work, biofilm-scale processes (biomass growth, H₂ consumption) are coupled to the pore-scale processes (gas flow and transport) via a mass exchange term and appropriate boundary conditions. Such an approach is used in a similar way by Eberhard et al. [27] for less complex problems (single fluid phase, mono-species biofilm).

2. Conceptual pore-scale model

A conceptual model which describes the flow of gases through the pores of a porous medium, the growth of biofilms on water-coated grains, and the microbial consumption and production of the dissolved gases - as they pertain to the storage of H₂ in the subsurface - is presented here.

To the authors’ knowledge, no model is currently able to account fully and comprehensively for the coupling between two-phase flow with evolving interfaces, reactive species transport and microbial activity in a complex pore-scale geometry. This is a very first attempt to tackle such a complex problem. Obviously, dealing with this complexity requires a series of simplifying assumptions which are listed below:

• The considered region is far from the injection point. The Reynolds numbers are much less than one (Re < 1).

• A H₂–CO₂–CH₄ gas mixture flows through a porous medium which is residually saturated with water. At this point in time, the gas phase has displaced all mobile water. Achieving a low water saturation in a relatively high-porosity medium is indeed a technical goal for such underground storage.

• Any variations in the properties or geometry of the gas–water interface as a result of biofilm activity, e.g. as observed on the Darcy scale by Rockhold et al. [35], are considered to be small and neglected. In a similar way, any potential impacts generated by aqueous films due to surface tension on bacterial motility and biofilm growth [36] are discarded.

• The porous medium is composed of spherically shaped grains which are coated with a layer of water, i.e. a water film. This is a crude simplification of a real porous-medium geometry.
intended for easy implementation of this screening study. It should be clearly stated that residual water in a porous medium can have a very heterogeneous distribution [37], accumulating at grain contact points, i.e. pendular rings, and in films. Hence, assuming the water is uniformly distributed around the grains is an approximation. Given the error made on the geometry, as compared to a real porous medium and the fact that it has been observed that the water–gas interfacial area is often on the order of the solid surface interfacial area for unconsolidated porous media [37], it is reasonable to neglect, for our simplified system, the pendular-ring effects and assume that water films are predominant.

- Microbial cells may form biofilms within the layer of water on the grains and consume/produce dissolved gases, which would lead to further dissolution of gases from (or exsolution to) the gas phase. At the grain scale, biofilm heterogeneity is assumed to be negligible.
- The geometry and other characteristics of the grains and water film call for a radial treatment of the boundary condition. Under the assumption that the gas Péclet numbers are small, which is compatible with the problem under consideration, the concentrations over the gas–water interface may be taken as uniform, allowing for a spherical symmetry of all unknown variables. Therefore, microbial growth and activity within the water film is assumed to be spherically symmetric around the centre of the grain.
- The exchange of components between the water and the gas phases is entirely driven by diffusion.
- CO₂ is assumed to be the sole electron acceptor available for microorganisms. In reservoirs containing significant amounts of sulphates or iron, these may also serve as electron acceptors. However, the CO₂-utilising microbial species can consume H₂ regardless of the mineral composition [8].
- Reactions involving the solid mineral phase (e.g. dissolution, precipitation) are neglected. Hence, potential effects that dissolved CO₂ may have on the mineral phase are not accounted for.

The disparity of scales and processes is summarised in Fig. 1. As can be seen in the figure, the biofilm growth within the water film and the gas flow through the porous medium need to be properly modelled. In the following sections, appropriate models for the biofilm (Section 2.1) and gas flow (Section 2.2) are presented in a general manner. Section 2.3 proposes a coupled scheme which relates these two models while retaining their respective scales of interest.

2.1. Biofilm model

The biomass accumulation and microbial activity in the film of water, which is assumed to coat each grain, is described in this section. The relevant organisms are identified and their activity quantified with kinetic rates within the framework of a continuum biofilm model.

2.1.1. Microbial reactions

Subsurface microorganisms tend to exist predominantly as groups of cells attached to solid surfaces and held together by extracellular polymers [38]. For a gas-filled reservoir which is residually saturated with water, active microorganisms present in the water rely on the gas phase as a carbon and energy source, which means that they would grow mostly at the gas–water interface. This is supported by numerous studies in the fields of bioremediation, transport in the vadose zone, and microbially enhanced oil recovery in which bacterial cells have been observed to grow at the oil– or air–water interface [39–41]. Since the water phase is assumed to be immobile, the interface between the fluids (and hence the biofilm as well) can remain stable for extended periods.

As summarised in Fig. 2, three types of microorganisms are considered to be active in the presence of high concentrations of H₂:

- **Methanogens**: \(4\text{H}_2 + \text{CO}_2 \xrightarrow{\text{methanogens}} \text{CH}_4 + 2\text{H}_2\text{O} \) \hspace{1cm} (1)

- **Acetogens**: \(4\text{H}_2 + 2\text{CO}_2 \xrightarrow{\text{acetogens}} \text{CH}_3\text{COOH} + 2\text{H}_2\text{O} \) \hspace{1cm} (2)

- **Acetotrophs**: \(\text{CH}_3\text{COO}^- + \text{H}^+ \xrightarrow{\text{acetotrophs}} \text{CH}_4 + \text{CO}_2 \) \hspace{1cm} (3)

Here, the term "methanogens" is used to refer to hydrogenotrophic methanogens (Archaea) which make use of CO₂ as the electron acceptor. The compounds in the above equations refer to aqueous species. Though dissolved CO₂ may exist as molecularly dissolved CO₂, carbonic acid, hydrogen carbonate, experimental data suggests that methanogenic reaction rates depend on undissociated CO₂ [42]. The concentration of dissociated CO₂ and the equilibrium between acetic acid and acetate depend on pH. In moderate to high concentrations, the dissociation reactions of the above-mentioned ions can themselves affect pH. However, for the conditions studied in this work, H₂ is the dominant gaseous species, and as such, only low concentrations of CO₂ (which is in equilibrium with gaseous CO₂) are achieved. Similarly, the presence of acetotrophs ensures a low concentration of acetic acid. Hence, the effect of these ions on pH is neglected. In addition,
the potential reduction in concentration of a given species (CO₂ or acetate) due to dissociation is neglected. As such, four aqueous species are accounted for by the model: dissolved H₂ and CH₄, undissociated CO₂, and acetate.

It is worth noting that some microorganisms are capable of reversing the methanogenic reaction in Eq. (1). However, this anaerobic methanotrophy can only be sustained if the H₂ produced is utilised immediately by other microbes, particularly, sulphate-reducing bacteria [43-45].

2.1.2. Biofilm growth

For the purposes of this work, a continuum model has been chosen. In this regard, a continuum is composed of microbial cells, extracellular polymers, and “void” (water-filled) spaces. Specifically, the mathematical model is based on the one proposed by Dockery and Klapper [18] and extended by Alpkvist and Klapper [46] for multi-species biofilms.

As stated in [18], the biofilm is treated as a homogeneous, viscous, and incompressible fluid of pressure p. Basically, biofilm growth is considered to be governed by an advective process, equivalent to the displacement of a mobile fluid (here the bulk fluid) by a less mobile one. Under the assumption that the biofilm is incompressible and density variations can be neglected (this means that microbial activity is assumed to be uniformly distributed within the biofilm), the following mass balance equation can be derived:

\[\nabla \cdot \mathbf{u} = \frac{q_t}{q_t}. \tag{4} \]

Growth and decay in the biofilm are accounted for with the source/sink term qₜ, directly related to the rate of change of biological volume. Note that qₜ is defined as the dry biofilm density. In this approach, the velocity \(\mathbf{u} \) is assumed to be proportional to the gradient in pressure p. Growth or decay of biomass, indeed, can lead to a pressure build-up or reduction in the biofilm, resulting in biomass movement. In order to differentiate between the two and the actual pressure of the bulk fluid, p will be referred to as a “biofilm pseudopressure”. Hence,

\[\mathbf{u} = -\lambda \nabla p. \tag{5} \]

Here, \(\lambda \) is a constant that can be interpreted as the mobility of the biofilm. Eq. (5) is probably a rough representation of the momentum balance equation for the biofilm. However, the main process under consideration is free dilatation of the biofilm phase due to metabolic growth. No other mechanical constraint, e.g. a result of the interaction with the viscous gas phase, is taken into account. This free dilatation model is well suited for the spherical one-dimensional geometry considered here.

In order to be able to track the interface between the biofilm and bulk water, the biofilm volume fraction \(\phi_t \) is defined as

\[\phi_t = \frac{V_t}{V}, \tag{6} \]

where \(V_t \) is the volume occupied by the biofilm, and \(V \) is the total volume of a given representative elementary volume. Note that

\[0 \leq \phi_t \leq 1. \tag{7} \]

Then, even though Eq. (4) is solved in the whole domain to get \(\mathbf{u} \), the velocity of the biofilm, \(\mathbf{u}_t \) must be zero outside the biofilm. Thus,

\[\mathbf{u}_t = H_t(\phi_t) \mathbf{u}, \tag{8} \]

where \(H_t \) is the Heaviside step function defined as:

\[H_t(\phi_t) = \begin{cases} 0, & \text{for } \phi_t < 1, \\ 1, & \text{for } \phi_t = 1. \end{cases} \tag{9} \]

It is approximated here as

\[H_t(\phi_t) \approx \phi_t^k \text{ (only valid for } 0 < \phi_t < 1), \tag{10} \]

which is exact for \(k \to \infty \).

Now, a mass balance equation for the biofilm can be written as:

\[\frac{\partial \phi_t}{\partial t} + \nabla \cdot (\phi_t \mathbf{u}_t) = \frac{q_t}{q_t}. \tag{11} \]

When \(\phi_t = 1 \), Eq. (11) reduces to Eq. (4). When \(\phi_t < 1 \), one obtains an ordinary differential equation with the first and last terms of Eq. (11).

Finally, inserting Eqs. (5) and (8), one obtains the following expression, expressed in spherical coordinates:

\[\frac{\partial \phi_t}{\partial t} + \frac{\lambda}{r^2} \frac{\partial}{\partial r} \left(r^2 \phi_t \frac{\partial p}{\partial r} \right) = \frac{q_t}{q_t}. \tag{12} \]

This leads to a system of two equations, (4) and (12), and two unknowns, \(\phi_t \) and \(\phi_i \). To illustrate how these variables interact, a simple, one-dimensional simulation – obtained by solving Eqs. (4) and (12) using a finite-volume scheme – is shown in Fig. 3.

The biofilm itself is composed of the three microbial species, methanogens (m), acetogens (a), and acetotrophs (t), such that...
The biofilm mass balance equation in Eq. (12) can be divided into:

\[
\frac{\partial \phi_i}{\partial t} - \frac{\lambda}{r^2} \frac{\partial}{\partial r} \left(r \phi_i \frac{\partial p}{\partial r} \right) = \frac{q_{li}}{\varepsilon_i}, \quad i \in \{m, a, t\}. \tag{14}
\]

For the sake of completeness, Eq. (4) is also expressed in spherical coordinates:

\[
\frac{\lambda}{r^2} \frac{\partial}{\partial r} \left(r^2 D_w \frac{\partial c_{iw}}{\partial r} \right) = q_{wi}, \quad i \in \{h, m, c, a\}. \tag{15}
\]

Hence, Eqs. (13)-(15) determine the development of the biofilm within the water film.

2.1.3. Solute transport

The molar concentrations of four dissolved components - hydrogen, methane, carbon dioxide, and acetate - are considered, i.e., C_w^h, C_w^m, C_w^c, and C_w^a, respectively. For the transport of solutes, no explicit differentiation is made between the water and the biofilm phases (local mass equilibrium assumption). Hence, the above concentrations are both in water and in the biofilm. Assuming small Péclet numbers (see assumption on immobility of the water film in Section 2),

\[
\frac{\partial c_{iw}}{\partial t} - \frac{1}{r} \frac{\partial}{\partial r} \left(r D_w^i \frac{\partial c_{iw}}{\partial r} \right) = q_{wi}, \quad i \in \{h, m, c, a\}. \tag{16}
\]

The effective diffusion coefficient is assumed to be a linear function of ϕ_i, i.e.,

\[
D_w^i = \phi_i D_{w,0}^i + (1 - \phi_i) D_{w,0}^i, \tag{17}
\]

where $D_{w,0}^i$ is the aqueous diffusion coefficient in the absence of biofilms and $D_{w,0}^i$ is the effective diffusion coefficient in the biofilm. This is a simple way of accounting for the differences in diffusivity between the biofilm and the water phases.

At the boundary to the gas phase Γ_{we}, i.e., the gas-water interface, Dirichlet boundary conditions for Eq. (16) are prescribed which depend on the gas-phase composition. This is done to account for the influence of the gas-phase composition on the concentrations of the dissolved components.

\[
c_{w,\Gamma_{we}}^i = K'(p_g, T) \cdot \chi_{w,\Gamma_{we}}^i, \quad i \in \{h, m, c\}, \tag{18}
\]

where $K'(p_g, T)$ is a solubility coefficient at the given pressure and temperature, and $c_{w,\Gamma_{we}}^i$ is the value of c_w^i at the boundary Γ_{we}. At this point, the average mole fraction of the gas-phase component at the interface, $\chi_{w,\Gamma_{we}}^i$, is assumed to be known (this will be discussed in Section 2.3).

Note that water and acetate are assumed not to partition into the gas phase. The saturated vapour pressures of water and acetic acid at 35 °C are 0.056 and 0.036 bar, respectively (data from the NIST database [47]), which, at a pressure of 100 bar, would result in gas-phase mole fractions of 0.56 and 0.36 mol/mol, respectively. As a result, these two components of the gas phase are neglected here. Hence, a no-flow condition is used for acetate at this boundary.

2.1.4. Sources and sinks

Sources and sinks in the balance Eqs. (14) and (16) are due to the growth and decay of biomass. In Eq. (14), it is given by:

\[
q_{li} = r_{gi} - r_{di}, \quad i \in \{m, a, t\}, \tag{19}
\]

where r_{gi} are the microbial growth rates, and r_{di} refers to the endogenous decay rate of the species i, calculated as a function of the constant decay coefficient b_0:

\[
r_{di} = b_0 \phi_i, \quad i \in \{m, a, t\}. \tag{20}
\]

In the following, the calculation of the various growth rates r_{gi} is described. However, it is important to note that if the considered domain (given volume of water) is completely filled with biofilm, no further growth of biofilm is possible. Once this happens, the value of r_{gi} tends to the rate of biofilm maintenance and is prevented from exceeding that of r_{di}, hence, avoiding biofilm growth outside the boundaries of the domain. Physically, this threshold value corresponds to the minimum consumption of nutrients required for maintenance purposes (endogenous metabolism).

Growth rate of methanogens

In general, it is assumed that Monod kinetics (e.g. [48]) can sufficiently reproduce the rates at which these subsurface microbial processes occur. Hence, the growth rate of the hydrogenotrophic methanogens can be expressed as (cf. Eq. (11)):

\[
r_{g, m} = \mu_m \phi_m \chi_{w,\Gamma_{we}} \left(\frac{C_w^m}{C_w^m + K_{hm}} \right) \left(\frac{C_w^c}{C_w^c + K_{cm}} \right) \tag{21}
\]

where μ_m is the maximum growth rate of the methanogenic microorganisms, and K_{hm} and K_{cm} are the half-saturation constants of H_2 and CO_2, respectively.

Several studies have dealt with the quantification of μ_m and K_{hm} which may vary with specific microbial species:

- $\mu_m = 0.3 - 4.1 \text{d}^{-1}$ [49],
- $K_{hm} = 4.2 \mu M$ [50],
- $5 \mu M$ [42],
- $4 - 16 \mu M$ [51],
- $5.8 - 7.3 \mu M$ [49].
However, with some interesting exceptions (e.g., [52]), the availability of CO$_2$ is rarely considered to be a limiting factor, and hence, there is little information on the value of K_{m}. Dornseifet al. [42] suggest, based on experimental data, that the molar concentration used in Eq. (21) for CO$_2$ should be that of undissociated CO$_2$. The corresponding value of K_{m} observed by Dornseifet al. [42] is 2.3 mM and as such several orders of magnitude higher than K_{m}.

Growth rate of acetogens. Based on Eq. (2), the following growth rate for hydrogenotrophic acetogens can be assumed:

$$r_{g,t} = \mu_k \phi_1 \phi_2 \left(\frac{C_w}{C_w + K_{h}} \right) \left(\frac{C_a}{C_a + K_a} \right),$$

(22)

where μ_k is the maximum growth rate of the acetogenic microorganisms, and K_{h} and K_a are the half-saturation constants of H$_2$ and CO$_2$, respectively. Literature values for these parameters include:

$$\mu_k = 0.4-1.9 \text{d}^{-1} [53],$$

$$K_{h} = 1.3-3.7 \mu M [54].$$

The values given above for K_{h} are similar in range to those of K_{m}. It will be assumed here that K_{h} is also in the same range as K_{m}.

Growth rate of acetotrophs Literature on methanogenic acetotrophs is readily available. The growth rate of these microorganisms (cf. Eq. (3)) can be estimated as:

$$r_{g,t} = \mu_t \phi_1 \phi_2 \frac{C_a}{C_a + K_t},$$

(23)

where μ_t is the maximum growth rate of acetoacetogenic microorganisms, and K_t is the half-saturation constant of acetate.

Good sources for the parameters of Eq. (23) are given below along with the parameter values.

$$\mu_t = 0.08 - 0.69 \text{d}^{-1} [55],$$

$$K_t = 0.46 \mu M [56],$$

$$0.4-3 \mu M [49, 55].$$

Consumption/production of dissolved components. Based on the microbial reactions, the consumption and production of the various dissolved components required in Eq. (16) read:

$$Q_{h} = \frac{r_{g,t}}{Y_{m}} r_{g,t},$$

(24)

$$Q_{w} = \frac{r_{g,t}}{Y_{m}} + \frac{r_{g,t}}{Y_{t}},$$

(25)

$$Q_{a} = \frac{r_{g,t}}{4Y_{m}} r_{g,t} + \frac{r_{g,t}}{4Y_{t}} r_{g,t},$$

(26)

$$Q_{c} = \frac{r_{g,t}}{4Y_{c}} r_{g,t}.$$

(27)

The coefficients of the rates above account for the stoichiometry of the reactions. Here, Y_{i} refers to yield coefficients (dry biomass per mole of substrate) which have values in the following ranges.

$$Y_{m} = 0.3-2.2 \text{g/mol H}_2 [49],$$

$$0.62 \text{g/mol H}_2 [57],$$

$$Y_{t} = 0.35-0.85 \text{g/mol H}_2 [53],$$

$$2.75 \text{g/mol H}_2 [57],$$

$$Y_{c} = 2.52 \text{g/mol A}_{t} [57].$$

1 For mesophilic homoacetogens growing on H$_2$/CO$_2$.

2.2. Gas flow and transport

As stated in Section 2, at a sufficiently large distance from the injection point, the advective flow in the gas phase can be assumed to be relatively slow. This allows the use of Stokes’ equations to describe gas flow in this domain:

$$\mu_{g} \nabla \cdot \nabla p_{g} + f = \nabla p_{g};$$

(28)

$$\nabla \cdot u_{g} = 0.$$

(29)

Here, μ_{g} is the viscosity, u_{g} the gas velocity, and p_{g} the pressure of the gas phase, while f accounts for external body forces. As can be seen above, the flow is assumed to be stationary, and compressibility and density-variation effects are neglected. Due to the large difference between the time scales of advection and biofilm activity (see Section 1.2), gas flow and transport can be assumed to be quasi-steady on the advective time scale, i.e. changes in gas-phase composition (and the corresponding changes in density) do not occur at this scale. In addition, the dependence of the gas-phase density on pressure is negligible due to low variations in pressure at the length scale under consideration (several millimetres).

The interface Γ_{gw} is a no-flow boundary, i.e.:

$$u_{g} \cdot n = 0, \quad \text{at } \Gamma_{gw}.$$

(30)

Mass exchange at the interface being small, we assume that the transport of the various components of the gas phase can be accounted for with the following transport equations:

$$\nabla \cdot \left(u_{g} c_{i} \phi_{g} \right) - \nabla \cdot \left(c_{i} D_{i} \nabla C_{i} \right) = 0, \quad i \in \{h, c\},$$

(31)

where c_{i} is the total molar concentration of the gas phase. Additionally:

$$\sum_{i} C_{i} = 1, \quad i \in \{h, m, c\}.$$

(32)

In this multicomponent transport model, the following assumptions have been made:

- The diffusion matrix coming from the Maxwell–Stefan theory is approximated by its diagonal value, the diagonal terms themselves being estimated from binary diffusion terms.
- The component equations are written on a molar basis, and we use the assumption that the molar average velocity, u_{g}, used in the Stokes equation, hence the use of u_{g} in Eq. (31) (cf. [58]).

As stated in Section 2.1.3, acetate is not considered to be present in the gas phase. The molar flux of each component across the gas–water interface Γ_{gw} is accounted for with the boundary conditions:

$$-\left(c_{i} D_{i} \nabla C_{i} \right) \mid_{\Gamma_{gw}} \cdot n = -\left(D_{m} \nabla C_{m} \right) \mid_{\Gamma_{gw}} \
\cdot n, \quad i \in \{h, m, c\}.$$

(33)

Obviously, the right-hand side of Eq. (33) can only be calculated if the gradient of the concentration of the component i in the water/biofilm phase (i.e., ∇C_{w}) is available.

2.3. Coupled model

The coupling of the models for biofilm growth in the water film around the grains (Section 2.1) and for the gas flow through the porous medium (Section 2.2) is described in this section, while keeping the respective temporal and spatial scales of the individual models. Let Ω_{b} be the gas-phase domain, Ω_{gw} the water–film domain (which may contain water and biofilm), and Γ_{gw} the interface between the two. The basic coupling principle can be summarised
based on these definitions and the assumption of spherically symmetric grains as follows:

1. Solve the flow equations in Ω_w with Eqs. (28)-(30).
2. Solve the transport equations for the components of the gas phase in Ω_w with Eqs. (31)-(33).
3. Calculate an average mole fraction x_{gas} for each component of the gas phase at the gas–water interface Γ_{gw} for each grain, i.e.

$$ x_{\text{gas}} = \frac{\int x_{\text{gas}} d\Omega_{\text{gw}}}{\int d\Omega_{\text{gw}}} $$

(34)

4. Assuming spherical symmetry of each grain, calculate the dissolved molar concentration $C_{w,\text{gw}}$ of each component at the gas–water interface as a function of x_{gas} using the gas solubility as in Eq. (18).
5. Use $C_{w,\text{gw}}$ as boundary conditions to solve for biofilm growth and component diffusion in the water film (Ω_w) of each grain (Eqs. (13)-(16)) in spherical coordinates with rotational symmetry.
6. Using the new distribution of C_{w} for each grain, update the boundary conditions of the gas transport equations as in Eq. (32).
7. Repeat Steps 2–6 till convergence is reached.

2.4. Numerical discretisation

For the biofilm and solute transport model, the partial differential equations are discretised in space with a vertex-centred finite-volume method and in time with an implicit Euler scheme. This is implemented within the flow simulator MUFTE-UG [59].

The Stokes flow equations are discretised with a finite-volume method, using the Uzawa scheme [26]. The transport equations are also discretised with a finite-volume method with an upwinding scheme (for more detail, see [26]).

Finally, the two models are coupled iteratively using the Picard method. The values of x_{gas} and $\langle D_w^\alpha \nabla C_w \rangle_{\Gamma_{\text{gw}}}$ are monitored for convergence.

3. Example of model application

In order to show the capabilities of the coupled model described in Section 2.3, a model simulation is presented here as an example. A model domain of dimension $6.83 \, \text{mm} \times 1.83 \, \text{mm} \times 1.83 \, \text{mm}$ consisting of 34 spherical grains is considered. The domain contains uniformly packed grains of radius $r_g = 0.41 \, \text{mm}$ as shown in Fig. 4. Note that the geometry is not supposed to be representative of a realistic reservoir rock. At this point, a simplified porous system (packed bed of uniform grains) is sufficient to investigate the physical processes involved and the coupling between biofilm growth and hydrogen consumption.

In the following, the description of the simulation is divided into two parts, one for each sub-model.

3.1. Gas flow and transport

It is assumed that there is a constant flow of a gas mixture through the domain. The domain is discretised with $165 \times 55 \times 55$ finite volumes. The gas is composed of (in molar fractions) 95% H_2, 4.96% CH_4, and 0.04% CO_2. Hence, the availability of CO_2 may limit microbial activity. Realistic storage conditions [5] of 100 bar and $35 ^\circ C$ are assumed to prevail. At these conditions, the total molar concentration and viscosity of the gas are estimated to be $3780 \, \text{mol/m}^3$ and $10 \, \mu Pa \, s$.

The maximum solubilities of CH_4 [60] and CO_2 [61] in water at the given conditions are $0.089 \, \text{mol/l}$ and $1.27 \, \text{mol/l}$, respectively. As for H_2, its maximum solubility is calculated from its Henry constant at 100 bar (e.g. [62]) as $0.071 \, \text{mol/l}$. Note that the maximum solubilities are multiplied by their respective gas-phase mole fractions to obtain the actual concentrations in water (see Eq. (18)).

The diffusion coefficients of the components of the gas phase are calculated as proposed by Fairbanks and Wilke [63]. The binary gas diffusion coefficients, which are needed for the calculation, are computed using the correlations given by Fuller et al. [64]. For the given gas composition and physical conditions, these result in the following diffusion coefficients:

$$ D^h = 7.26 \times 10^{-7} \, \text{m}^2/\text{s}, \quad D^c = 5.98 \times 10^{-7} \, \text{m}^2/\text{s}. $$

Boundary conditions. Periodic boundary conditions are used for the Stokes flow equations, and an average pressure gradient, e.g., as a result of the injection pressure at the borehole, is maintained in the domain, i.e.

$$ \nabla p_t - f = \begin{pmatrix} -0.001 \\ 0 \\ 0 \end{pmatrix} \, \text{Pa/m}. $$

Here f represents gravitational forces.

At the inflow boundary ($x = 0 \, \text{mm}$, see Fig. 4), the mole fractions of the various gases are constant and as given previously, i.e. 95% H_2, 4.96% CH_4, and 0.04% CO_2. At the outflow boundary ($x = 6.83 \, \text{mm}$), the diffusive fluxes in x-direction are set to zero (Dankworth conditions). All other boundaries are no-flow boundaries.

3.2. Biofilm growth

The thickness l_w of the water films that coat the grains is assumed to be proportional to the size of the grains and discretised spatially with 25 nodes. Assuming a residual water saturation of 0.2, this yields $l_w = 0.08 r_g$ for each grain. As stated previously, this is only possible under the assumption that the water is uniformly distributed in the medium and coats the grains as films. This neglects possible water accumulation at grain contact points, i.e. pendular rings.

Initially, all concentrations and the biofilm pseudo-pressure are zero, and the volume fraction of each of the three microbial species is considered as assigned a small value (10^{-5}). The boundary conditions at the gas–water interface are as stated in Section 2.2. In addition:

- There is no flow of biomass across the gas–water interface.

![Fig. 4. Simulation domain showing the arrangement of 34 spherical grains. The marked grain is studied in Section 1.1.](image-url)
At the grain-water boundary, the following conditions are applied:

- The biofilm pseudo-pressure is set to zero.
- There is no flow of biomass, dissolved gases, or acetate across this boundary.
- The consumption rate of all microbial species are reduced to the needs of endogenous metabolism once the biofilm completely fills the water film.

As suggested by Stewart [65], the diffusion in the biofilm is estimated with:

\[D'_{w,f} = 0.6D_{w,0} \] \hspace{1cm} (36)

for light gases (in this case, this value is used for H₂, CH₄, and CO₂), and

\[D'_{w,f} = 0.25D_{w,0} \] \hspace{1cm} (37)

for organic solutes (in this case, acetate). The values given in [65] for \(D'_{w,0} \) are used here:

\[D'_{w,0} = 4.50 \times 10^{-9} \text{ m}^2/\text{s}, \]
\[D'_{w,0} = 1.49 \times 10^{-9} \text{ m}^2/\text{s}, \]
\[D'_{w,0} = 1.92 \times 10^{-8} \text{ m}^2/\text{s}, \]
\[D'_{w,0} = 1.29 \times 10^{-7} \text{ m}^2/\text{s}. \]

The biofilm density \(\rho_b \) is 100 g/l, which, compared to the values in [66], represents a dense biofilm. The parameter \(k \) is chosen to be 100. The parameters for the growth kinetics of all three microbial species are given in Table 1. These parameters have been chosen to lie within the ranges of values given in Section 2.1.2. For this particular case, the methanogens have a higher maximum growth rate than the acetogens, and hence will be more dominant.

3.3. Results

The distribution of the magnitude of velocity in the domain is shown for a slice through the z-plane in Fig. 5. Flow is from left to right. Reynolds numbers do not exceed \(1.5 \times 10^{-4} \). For the same slice, the distribution of the CO₂ mole fraction in the gas phase is shown in Fig. 6. During peak microbial activity, the largest varia-

Table 1

Growth and decay parameters used in simulation.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum growth rate (1/d)</td>
<td>0.65</td>
</tr>
<tr>
<td>(\mu_a)</td>
<td>0.40</td>
</tr>
<tr>
<td>(\mu_l)</td>
<td>0.50</td>
</tr>
<tr>
<td>Yield coefficients</td>
<td></td>
</tr>
<tr>
<td>(\gamma_m) (g/mol H₂)</td>
<td>0.5</td>
</tr>
<tr>
<td>(\gamma_a) (g/mol A)</td>
<td>0.5</td>
</tr>
<tr>
<td>(\gamma_l)</td>
<td>2.5</td>
</tr>
<tr>
<td>Half-saturation coefficients</td>
<td></td>
</tr>
<tr>
<td>(K_{m}), (\mu \text{ mol} / \text{L})</td>
<td>5</td>
</tr>
<tr>
<td>(K_{s}), (\mu \text{ mol} / \text{L})</td>
<td>5</td>
</tr>
<tr>
<td>(K_{0}), (\mu \text{ mol} / \text{L})</td>
<td>0.3</td>
</tr>
<tr>
<td>(K_{u}), (\mu \text{ mol} / \text{L})</td>
<td>0.1</td>
</tr>
<tr>
<td>Acetate (mmol/L)</td>
<td>1</td>
</tr>
<tr>
<td>Endogenous decay constant (1/d)</td>
<td>0.06</td>
</tr>
</tbody>
</table>

![Fig. 5](image1.png)

Fig. 5. A slice through the z-plane at \(z = 0.7 \text{ mm} \) showing the magnitude of the gas-phase velocity \(|u_{g}| \). This does not vary with time and is solved for only once.

![Fig. 6](image2.png)

Fig. 6. The plot at the top shows the mole fraction of CO₂, \(x_{CO₂} \), along the x-axis for \(y = z = 0 \text{ mm} \) at different points in time, while the bottom figure shows \(x_{CO₂} \) on a slice through the z-plane at \(z = 0.7 \text{ mm} \) and \(t = 33 \text{ days} \).
tion of the CO₂ concentration around a grain from its average grain value was approximately 5%. In this simulation, the availability of CO₂ limits growth. It can be seen that a significant amount of CO₂ is consumed as it passes through the domain. The rate at which this occurs depends on the concentration of CO₂ as the growth-limiting component and the state of development of the biofilm in each water film in the different parts of the domain. As the biofilms grow, the consumption rate increases. However, when a water film is filled with biofilm, the biofilm only consumes the amount required for maintenance. This is the case, for instance, for the curve at t = 100 days, which shows a lower consumption than at earlier times. In addition, the lower CO₂ concentration towards the right boundary leads to a reduced consumption (and growth) rate. This can be seen in the gradient most of the curves in Fig. 6, which tend to decline towards the right.

For one of the grains in the domain (see grain marked in Fig. 4), the biofilm volume fraction and the concentration of CO₂ within the water film that coats the grain are shown in Fig. 7 for t = 33 days. The biofilm has filled the area near the gas–water interface, and is growing towards the grain–water interface. The availability of CO₂ declines towards the grain–water interface, hence the uneven growth of the biofilm. Figs. 8 and 9 show the development of the biofilm and the corresponding CO₂ concentration in water over time. At early times, biofilm growth is completely uniform since there is no shortage of CO₂ in the domain. This changes as the amount of active biomass increases leading to growth limitation near the grain–water interface.

The biofilm is composed of the three species (methanogens, acetogens, and acetoetrophs) as shown in Fig. 10. Since there is an excess of H₂, the methanogens compete with the acetogens for CO₂, while the acetoetrophs produce CO₂. Due to the higher specific growth rate of the methanogens (as used in this simulation), the methanogens dominate the biofilm, while the acetogens and acetoetrophs together make up less than 20% of the biofilm. Due to the diversity of microorganisms, this may not be the case in general. However, literature values for the kinetic growth parameters of methanogens and acetogens (see Section 2.1.2) suggest higher methanogenic growth rates. The illustrative snapshot of the spatial variations of the biofilm population in Fig. 10 after 33 days shows that, even though methanogenic activity prevails globally, it is slightly less dominant towards the grain–water interface due to the reduced CO₂ concentration (see Fig. 7). In this example, the acetogenic half-saturation constant for CO₂ is lower than that of the methanogens, giving the acetogenic/acetoetrophic consortium an advantage.
a small advantage in regions of low CO₂ concentration within the biofilm.

To give a first example of the effective macroscopic parameters which can be extracted from such pore-scale simulations and, ultimately, implemented in reservoir-scale models, the effective rates of microbial H₂ and CO₂ consumption and CH₄ production have been calculated. As the gas passes through the domain, the rates change with time depending on the amount and activity of biomass in the domain. As shown in Fig. 11, the total/effective exchange rates between the biofilm/water and gas phases increase strongly at $t \approx 20$ days. This is due to the fast growth of biomass. At some point, some of the water films become filled with biofilm, leading to a slowdown of the exchange rates. At $t \approx 35$ days, all the water films are saturated with biofilms. At this point, the consumption of the gases is reduced to the amount required for maintenance. This leads to constant conversion rates, suggesting the possibility of using a simplified model at late times.

3.4. Model sensitivity: impact of initial water saturation

In order to study the influence of the amount of water in the porous medium on the behaviour of the system and, in particular, on the temporal evolution of the conversion rates, two further simulations are presented in this section which are identical to that of Sections 3.1–3.3 except that the thickness l_w of the water films that coat the grains are varied as follows:

(a) Water saturation $S_w = 0.15$ (i.e., $l_w = 0.06 \cdot R_{ss}$);
(b) Water saturation $S_w = 0.25$ (i.e., $l_w = 0.10 \cdot R_{ss}$).

The resulting conversion rates of the dissolved gases (see Fig. 12) show that:

- Thicker water films allow, as expected, longer periods of active microbial growth due to the larger amount of space available than thinner films.
- The peak conversion rate is higher the thicker the water film since it takes a longer period of time for each individual water film to fill up with biomass.
- The steady-state conversion rate is also higher the thicker the water film. This is due to the fact that thicker biofilms require more substrate for maintenance.

4. Summary and conclusions

From the results described in this work, our primary conclusions and comments for future research on this problem are as follows:

- Microorganisms capable of making use of H₂ as an energy source may have a significant impact on the efficiency of underground hydrogen storage operations.
- A numerical model is presented which couples biofilm-scale processes to pore-scale flow and transport processes. The algorithm models the biofilm-scale processes in uniform films of residual water which are assumed to coat the grains of the porous medium and couples these to gas flow through the pores. The model does not account for a heterogeneous water distribution within the porous medium. To an extent, this restricts its applicability since an uneven water distribution may lead to a more heterogeneous biomass distribution.
- The biofilm model is based on a viscous-fluid model and accounts for three microbial species (methanogens, acetogens, and aceto�큰s) as well as the diffusion and consumption/production of dissolved components. On the pore scale, Stokes' flow equations are solved, and the transport of the gas components, H₂, CH₄, and CO₂, is simulated. These two models are coupled via boundary conditions (including an exchange flux term).
- Depending on the composition of the stored gas, methanogens and acetogens compete for H₂ and CO₂. Literature values for the kinetic growth parameters of these microorganisms suggest higher methanogenic growth rates. Nonetheless, it is possible for both to coexist.
- The rate of conversion of H₂ and CO₂ to CH₄ depends on the amount and activity of biomass present. However, when the available residual water is saturated with biomass, the conversion rates approach a steady state, which is the amount the microbes require for maintenance.
- Variations in the thickness of the water films show that the steady-state conversion rates vary with the amount of residual water in the porous medium. Thicker water films lead to thicker biofilms which require more substrate.

5. Outlook

- The model concept needs to be extended to account for a more realistic geometry and water distribution in the porous medium, particularly at grain contact points.
- The dissociation of CO₂ in water and the effects of the mineral phase on the microbial processes are important issues that are not yet accounted for by this model.
Future work should also consist of extending the biofilm model to account for a greater number of species which may compete with methanogens and acetogens for H₂. Sulphate-reducing bacteria, for example, may convert H₂ to hydrogen sulphide in the presence of sulphates which could have a very detrimental effect on a UHS operation.

Experimental observations will be required in parallel to confront our numerical predictions. To this end, an experimental study in flow-through triaxial cells is currently being carried out. The effective kinetics of H₂ consumption under flow conditions will be characterised in the presence and in the absence of bacteria on cylindrical samples of reservoir rocks (limestone and sandstone) under the stress, pressure, and temperature conditions of underground storage.

The effect of these biofilm- and pore-scale processes on the field scale certainly has to be investigated. Effective conversion rates can be extracted from simulations using this model and implemented in larger-scale models. This can be achieved, for example, by running several possible simulation configurations and numerically determining constitutive relationships.

Acknowledgement

This work was partially supported by the Region of Lorraine and by Carnot Funding (Grant Hydrogène, Institut Carnot ICELI).

Appendix A: Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cw</td>
<td>molar concentration of component in water/biofilm</td>
<td>mol/l</td>
</tr>
<tr>
<td>D</td>
<td>diffusion coefficient</td>
<td>m²/s</td>
</tr>
<tr>
<td>H</td>
<td>Heaviside step function</td>
<td>-</td>
</tr>
<tr>
<td>K</td>
<td>solubility coefficient</td>
<td>mol/l</td>
</tr>
<tr>
<td>Rs</td>
<td>grain radius</td>
<td>mm</td>
</tr>
<tr>
<td>S</td>
<td>saturation</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>control volume</td>
<td>l</td>
</tr>
<tr>
<td>Vt</td>
<td>biofilm volume</td>
<td>l</td>
</tr>
<tr>
<td>Y</td>
<td>yield coefficient</td>
<td>g/mol H₂ or g/mol A_c</td>
</tr>
<tr>
<td>bo</td>
<td>biomass decay coefficient</td>
<td>-</td>
</tr>
<tr>
<td>k</td>
<td>parameter for step function</td>
<td>-</td>
</tr>
<tr>
<td>cs</td>
<td>total molar concentration of gas phase</td>
<td>mol/m³</td>
</tr>
<tr>
<td>f</td>
<td>external body forces</td>
<td>N/m²</td>
</tr>
<tr>
<td>lw</td>
<td>thickness of water film</td>
<td>mm</td>
</tr>
<tr>
<td>n</td>
<td>unit normal vector</td>
<td>-</td>
</tr>
<tr>
<td>p</td>
<td>biofilm pseudo-pressure</td>
<td>Pa</td>
</tr>
<tr>
<td>p_e</td>
<td>gas-phase pressure</td>
<td>Pa</td>
</tr>
<tr>
<td>qi</td>
<td>sources/sinks of biomass</td>
<td>g/l</td>
</tr>
<tr>
<td>qiw</td>
<td>sources/sinks of components in water/biofilm</td>
<td>mol/(l d)</td>
</tr>
<tr>
<td>r_d</td>
<td>endogenous biomass decay rate</td>
<td>g/(l d)</td>
</tr>
<tr>
<td>r_g</td>
<td>biomass growth rate</td>
<td>g/(l d)</td>
</tr>
<tr>
<td>u</td>
<td>Velocity of biomass displacement due to biofilm growth</td>
<td>dm/s</td>
</tr>
<tr>
<td>u_g</td>
<td>gas-phase velocity</td>
<td>m/s</td>
</tr>
<tr>
<td>x_b</td>
<td>mole fraction</td>
<td>mol/mol</td>
</tr>
<tr>
<td>(\Gamma_{gw})</td>
<td>gas–water interface</td>
<td>dm²</td>
</tr>
<tr>
<td>(\Omega_w)</td>
<td>gas and biofilm/water domains</td>
<td>l</td>
</tr>
<tr>
<td>(\phi_t)</td>
<td>biofilm volume fraction</td>
<td>-</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>mobility of biofilm</td>
<td>dm²/s</td>
</tr>
</tbody>
</table>

Appendix A (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_a), (\mu_v), (\mu_t)</td>
<td>maximum specific growth rate of microbial species</td>
<td>1/d</td>
</tr>
<tr>
<td>(\mu_s)</td>
<td>gas-phase viscosity</td>
<td>Pa s</td>
</tr>
<tr>
<td>(q_l)</td>
<td>dry biofilm density</td>
<td>g/l</td>
</tr>
</tbody>
</table>

Superscripts
- a: acetate
- c: carbon dioxide
- h: hydrogen
- m: methane

Subscripts
- a: acetogens
- d: decay
- f: biofilm
- g: gas or growth
- m: methanogens
- t: acetotrophs
- w: water

References

